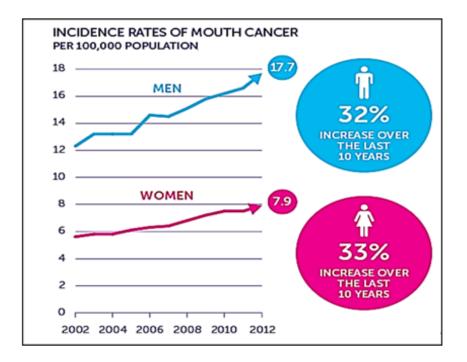


Screening for Oral and Oropharyngeal Cancer: A Comprehensive Solution for Better Outcomes Petra Wilder-Smith DDS, PhD; Professor & Director of Dentistry Beckman Laser Institute, University of California, Irvine

Oral and Oropharyngeal Cancer (OC)


- Only major cancer whose outcome has not improved over past generation
- Tumors of mouth and oropharynx are some of the most frequent head & neck cancers
- HPV-related increase in OC incidence rates worldwide

<u>In US¹</u>

- 150,000 new cases annually
- 400,000 people living with OC
- 13,000 deaths annually

Worldwide²⁻⁴

- 600,000 new cases annually
- Estimated 2,000,000 people living with OC
- Estimated 220,000 deaths annually
- OC accounts for up to 40% of cancers in some regions

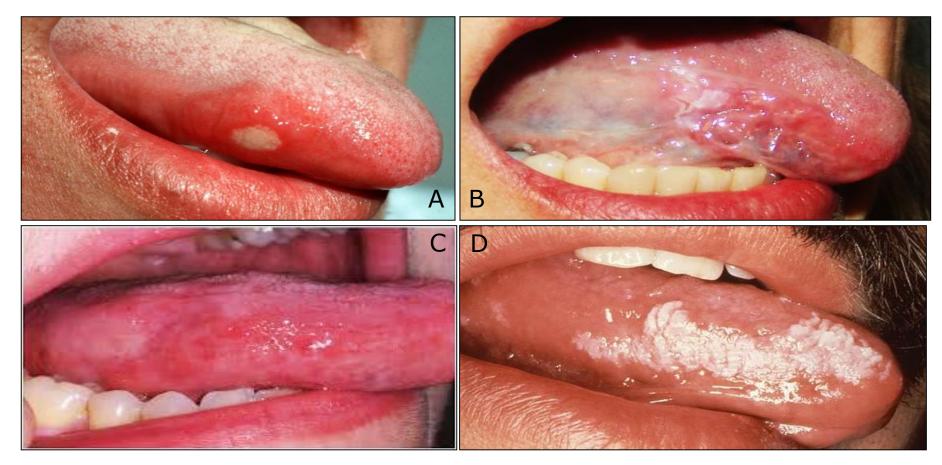
^{1.} https://seer.cancer.gov/statfacts/html/oralcav.html. 2. Moro JDS, Maroneze MC, Ardenghi TM, Barin LM, Danesi CC. Oral and oropharyngeal cancer: epidemiology and survival analysis. Einstein (Sao Paulo). 2018;16(2):eAO4248. 3. Chin D, Boyle GM, Porceddu S, Theile DR, Parsons PG, Coman WB. Head and neck cancer: past, present and future. Expert Rev Anticancer Ther. 2006 Jul; 6(7):1111-8. 4. WHO In: World Cancer Report 2014. Stewart BW, Wild CW, editors. Lyon: International Agency for Research on Cancer; 2015. pp. 423–423.

Problem

In High Income Countries

- 5-year survival:
 - 80% for early disease
 - 15 40% for cancer metastasis
- More than 2/3 of all OCs are diagnosed at an advanced stage
- High risk populations typically do not have access to early diagnosis

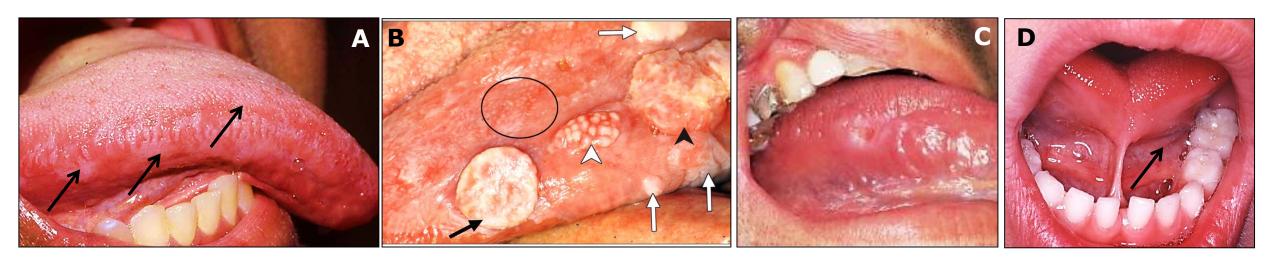
In Low/Middle Income Countries


- 5-year survival is 10 40%
- Over 90% of all OCs are detected at an advanced stage
- In some developing countries, OC is #1 cause of death
- More than 90% of high risk individuals do not have access to early diagnosis

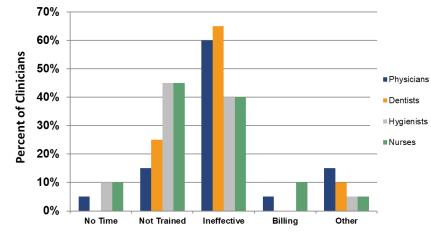
Current Path to OC Treatment

- 1. Positive screening outcome by hygienist/dentist/physician/nurse/screener
 - Typical screening accuracy 30-60%
- 2. Referral to specialist
 - History
 - Clinical exam
 - Biopsy
- 3. Biopsy to Pathology Lab
 - Processing
 - Pathologist evaluation and report
- 4. Repeat specialist visit
 - Diagnosis
 - $\circ \quad \mbox{Treatment planning and referral}$
 - Regular (biopsy-based) monitoring every 3, 6 or 12 months

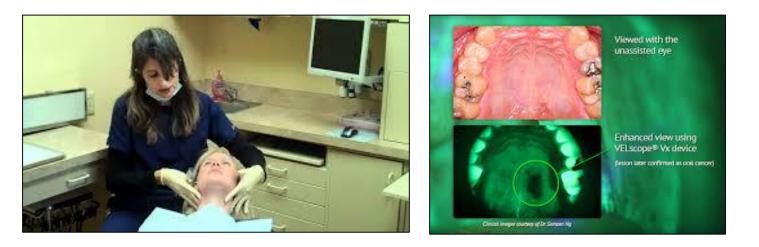
Why is it so difficult to detect OC?


Can you determine which lesion depicts a malignancy and a premalignancy?

Why is it so difficult to detect OC?


Additional challenges in early detection and diagnosis

- Lesion monitoring (A)
- Field cancerization (B)
- Heterogeneity
- Recurrence (C)
- HPV (D)

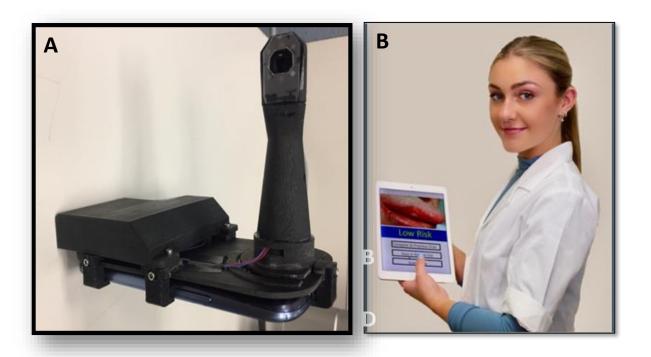


Evaluation of Current Screening Practice

- 1. <u>Hygienists, dentists, nurses, physicians mandated to examine for OC</u>
- < 50% of clinicians feel competent
- Screening accuracy is poor: risk factor assessment, palpation, visual exam, cannot access all areas
- Surgical biopsy remains sole diagnostic and monitoring tool
- Adjunctive tools: costly, complex, specialist-oriented, no decision-making guidance, poor specificity, limited access



85% of clinicians cited "ineffective" (51.25%) or "inexpert" (32.5%) as primary reason for NOT screening



Solution

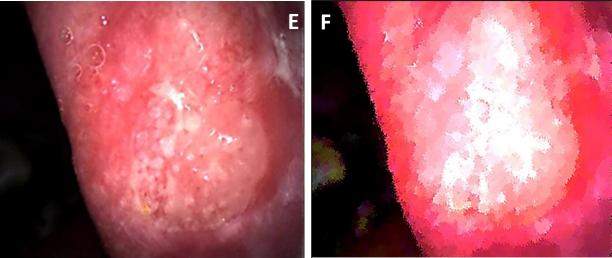
- Novel smartphone-based solution for detecting and diagnosing OC
- Images at any site in oral cavity, oropharynx
- Proprietary Artificial Intelligence (AI)
 - Provides immediate screening outcome
 - Automatically measures lesion progression
 - Provides immediate decision-making guidance
- Designed for use by community screeners, all clinicians
- Remote-enabled for real-time, off-site specialist input
- Very low cost, robust, compact and light

Oral Cancer Smartphone Probe

First (A) and third (B-D) generation oral cancer smartphone probe prototypes.

The third generation model provides imaging access to all areas of the oral cavity including the base of the tongue and oropharynx.

Oral Cancer Smartphone Probe


- One-step recording of images
- Probe provides easy access to high risk sites
- Large field of view (3cm x 3cm)
- Also functions as high-resolution dental intra-oral camera
- Diagnoses previously inaccessible areas (HPV-related base of tongue & oropharynx)
- High contrast & resolution in-focus images of all sites
- Images immediately visible on smartphone or tablet screen
- Proprietary Artificial Intelligence (AI) provides immediate screening outcome

Oral Cancer Smartphone Probe

Smart phone probe images

- A: White Light Image (WLI) lower vestibule
- B: WLI base of tongue
- **C,D:** WLI and combined fluorescence image w pseudocolor of tonsillar region w green OSCC lesions
- **E,F:** WLI and fluorescence image w pseudocolor of sublingual region w white ulcerated & hyperkeratinized lesions, no neoplasia

Sites

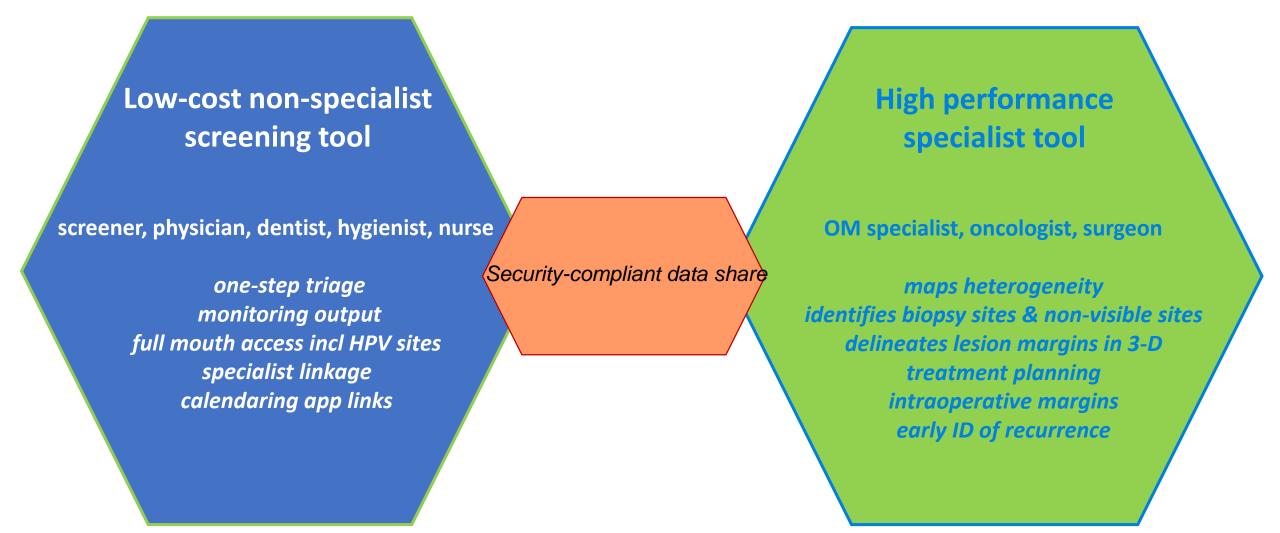
- 1. University of California, Irvine
- 2. Mazumdar Shaw Cancer Center, Bangalore, India
- 3. KLE Dental School, Bangalore, India
- 4. mhealth (Biocon Foundation), Kerala, India

Screening Performance in Remote Community Setting

9,468 subjects diagnosed as healthy, dysplastic, malignant or "other" by

- Clinical assessment by community screener (CS) after oral cancer screening training
- Clinical assessment by CHW PLUS visual assessment of probe image by CS
- Al-driven diagnosis using images & convolutional neural networks

	CS: Clinical Evaluation + Risk Factors	CS: Clinical Evaluation + Risk Factors + Probe Image	Artificial Intelligence Diagnosis
Healthy	76.3%	71.7%	90.7%
Dysplastic	47.8%	58.8%	82.0%
Carcinoma	44.3%	62.3%	88.3%
Other	56.3%	63.9%	85.9%
MEAN	56.1%	64.3%	86.4%


Conclusion

- Novel smartphone or tablet-based solution for oral cancer detection
- Proprietary AI-enabled screening and triage guidance enables
 - earlier, more accurate referral
 - earlier care and better outcomes
- One-step automated process customized for ease of use
- Direct data, voice and video connect to off-site specialists
- HIPAA-compliant data protection
- Compatible with most smartphones and tablets

What's Next & the Big Picture: A seamlessly integrated solution for OC

We gratefully acknowledge our collaborators

- Dr. Rongguang Liang group, University of Arizona, Tucson
- Dr. Praveen Birur group, KLES Dental School & Biocon Foundation, Bangalore
- Dr. M Abraham Kuriakose group, Mazumdar Shaw Cancer Center, Bangalore and Roswell Park Cancer Center, Buffalo NY
- Dr. Kathryn Osann, University of California, Irvine
- Dr. Zhongping Chen group, University of California, Irvine
- Dr. Diana Messadi group, University of California, Los Angeles
- Dr. Pierre Baldi group, University of California, Irvine
- IMS Medical Imaging Solutions, Toronto, Canada

