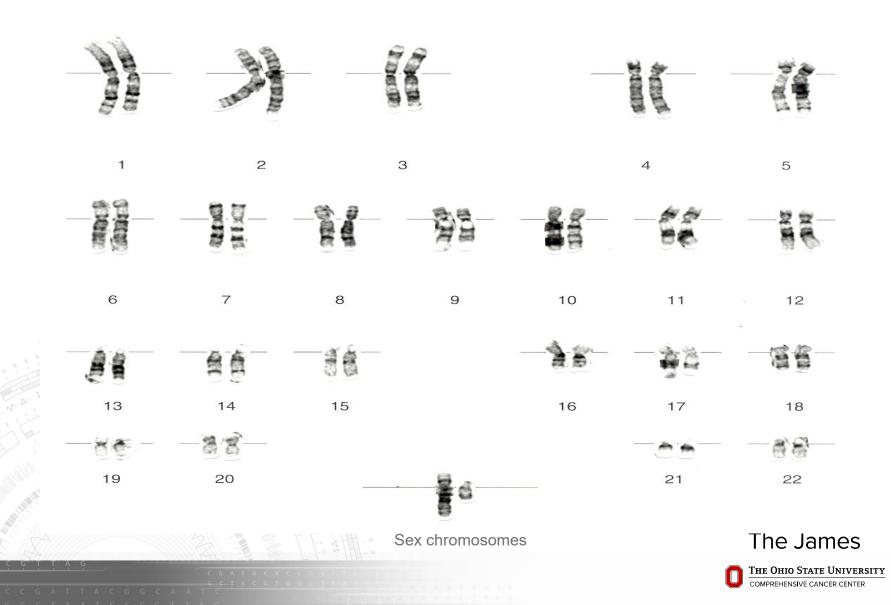
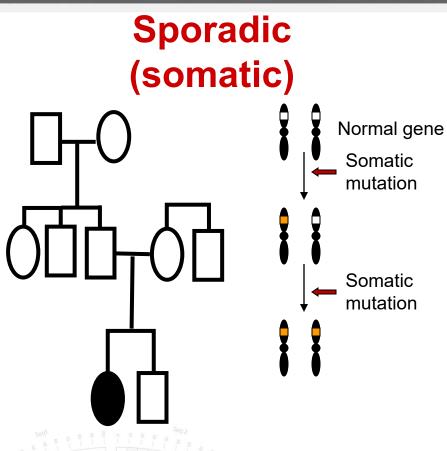
Genetics/Genomics 101

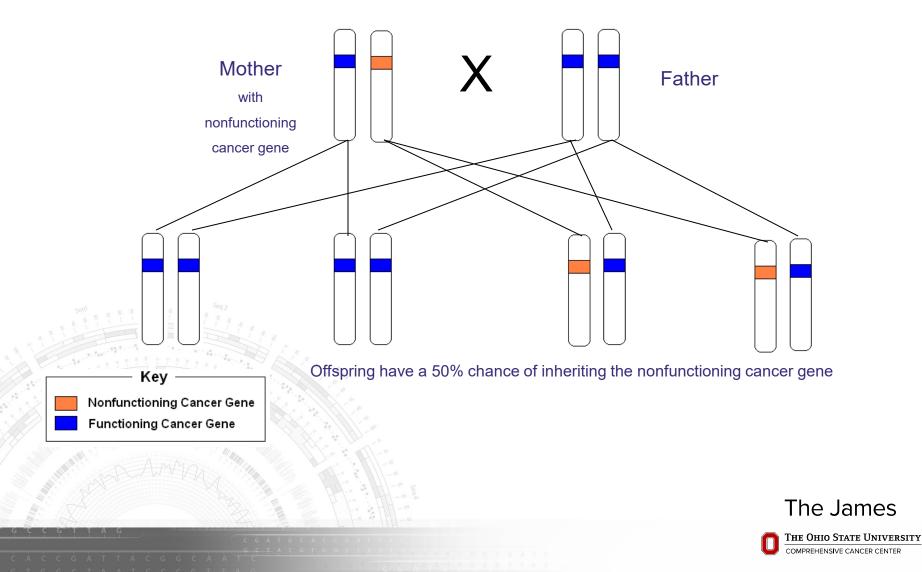

Heather Hampel, MS, LGC Associate Director, Division of Human Genetics Professor, Department of Internal Medicine @HHampel1

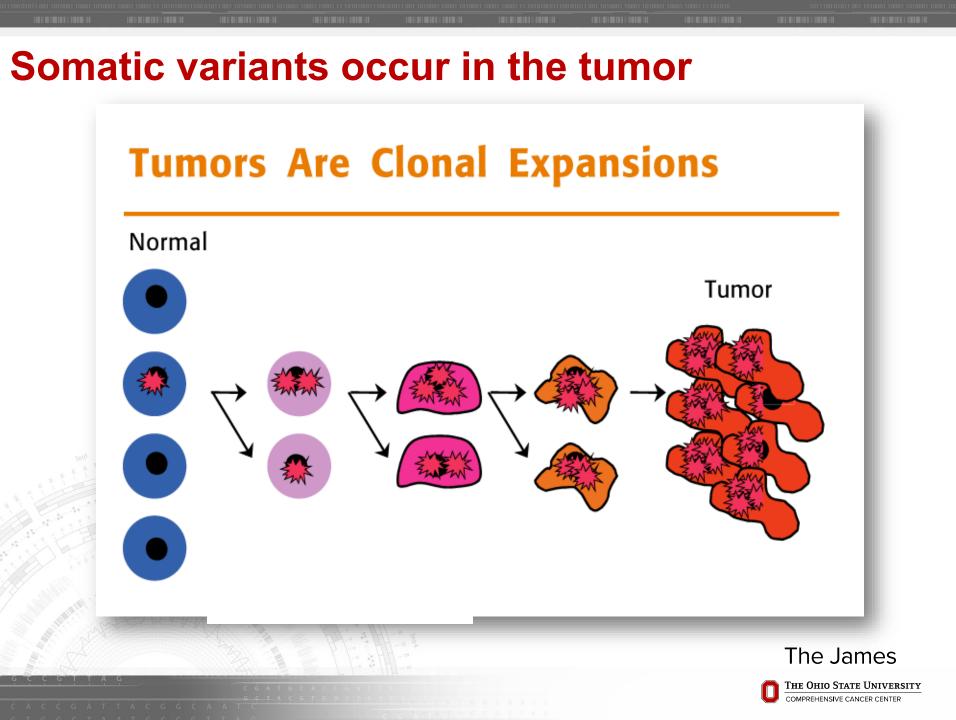

The James

The Ohio State University

COMPREHENSIVE CANCER CENTER

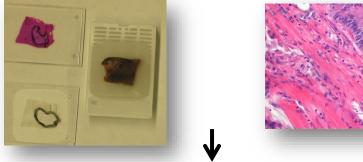
Germline mutation Somatic mutation


Inherited


(germline)

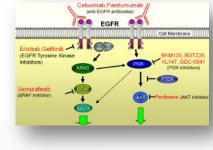
- Early age at onset (<50)
 - Multiple generations with cancer
 - Bilateral or multiple primary cancers
 - Clustering of certain cancers The James (i.e. breast/ovarian)
 The Ohio State University

- Later age at onset (>60)
- Little or no family history of cancer
- Single or unilateral tumors


Dominant Inheritance of a Cancer Gene

Emerging Model of Cancer Treatment

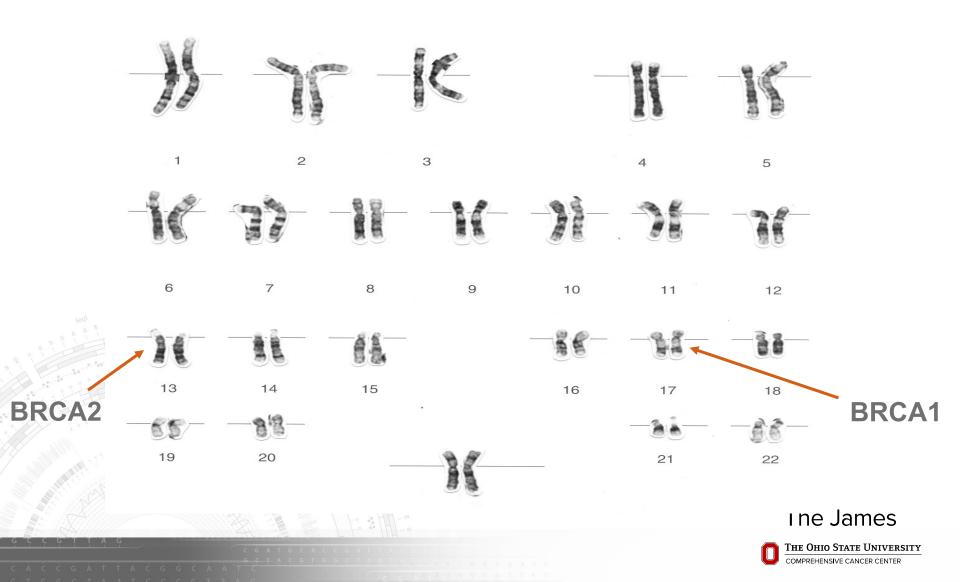
Tumor tissue routinely acquired for molecular diagnostics

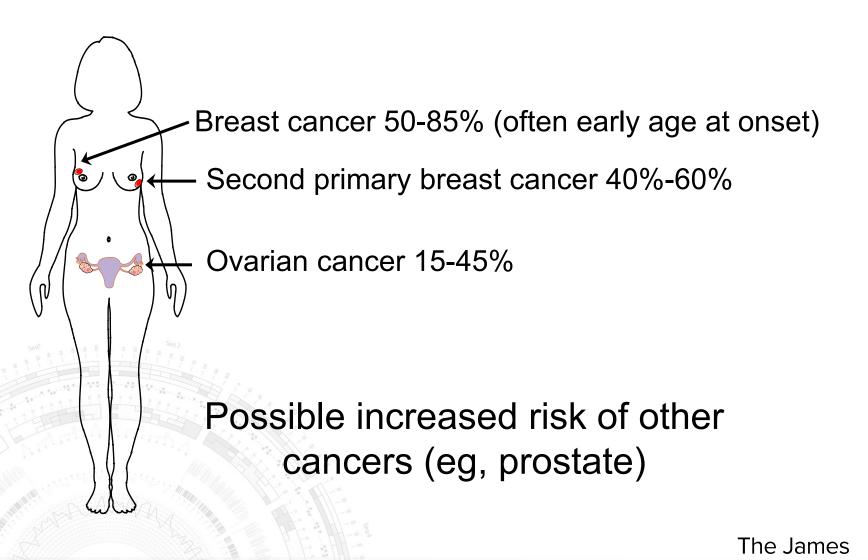


All/or a subset of actionable mutations assessed

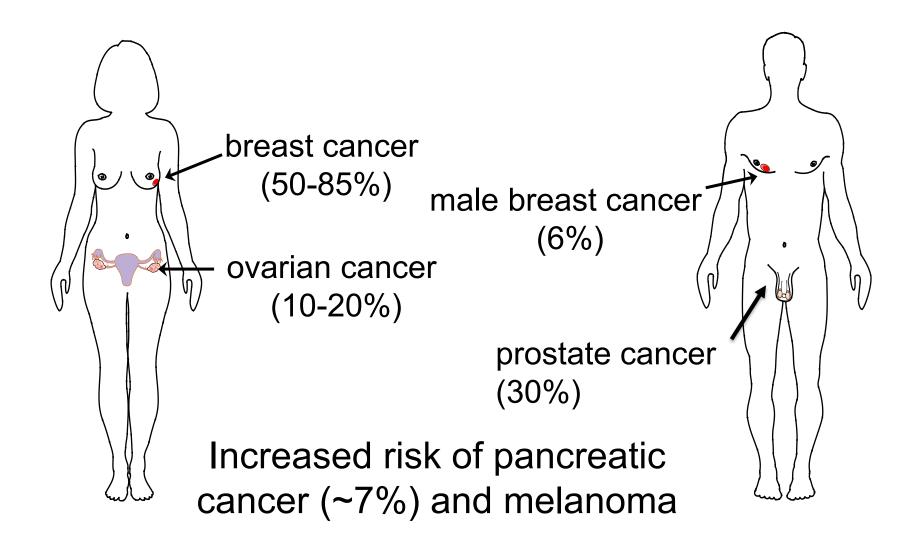
Therapy selected based on molecular characteristics

Differences between Somatic & Germline Variants


- Germline variants are in EVERY cell in your body.
- Somatic variants are ONLY in tumor cells.
- Germline variants are in 50% of your DNA.
- Somatic variants are usually in <35% of the DNA in your tumor.
- Germline testing uses blood, saliva, or skin.
 Somatic testing uses tumor tissue acquired through biopsy, surgery, or circulating cell free DNA in blood.


The Most Common Hereditary Cancer Syndromes

- Hereditary Breast-Ovarian Cancer Syndrome
 - Due to mutations in the BRCA1 and BRCA2 genes
- Lynch Syndrome
 - Due to mutations in MLH1, MSH2, MSH6, PMS2, and EPCAM genes
- Considered Tier One Genetic Diseases by CDC along with Familial Hypercholesterolemia
 - Common
 - Easy to test for
 - Actionable
 - Geisinger MyCode assessed for Tier 1 conditions in 50,000 health plan participants
 - 1.32% (1 in 76 individuals) had one of these conditions
 - Compare to the 1 in 800 positive rate in newborn screening programs


Hereditary Breast-Ovarian Cancer Syndrome (HBOC)

COMPREHENSIVE CANCER CENTER

BRCA2-Associated Cancers: Risk by age 70

HBOC Breast Cancer Management NCCN Guidelines v1.2020

- Breast awareness starting at age 18 y.
- Clinical breast exam, every 6–12 months starting at age 25 y.
- Age 25–29 y, annual breast MRI screening with contrast (or mammogram with consideration of tomosynthesis, only if MRI is unavailable) or individualized based on family history if a breast cancer diagnosis before age 30 is present.
- Age 30–75 y, annual mammogram with consideration of tomosynthesis and breast MRI screening with contrast.
- Age >75 y, management should be considered on an individual basis.
- Discuss option of risk-reducing mastectomy
 - Counseling should include a discussion regarding degree of protection, reconstruction options, and risks.
 - Prophylactic mastectomy has been shown to reduce the risk for developing breast cancer by about 90%
 - Discuss options for risk reduction agents (e.g. chemoprevention with Tamoxifen) including risks and benefits of each medication

HBOC Ovarian Cancer Management NCCN Guidelines v1.2020

- Risk-reducing bilateral salpingo-oophorectomy between the ages of 35-40, or after child bearing is complete. Because ovarian cancer in women with BRCA2 mutations occurs later than in BRCA1, it is reasonable to delay risk-reducing BSO until age 40-45 unless family history warrants earlier age of prophylactic surgery
- Some evidence of slight increased risk for serous uterine cancer among BRCA1 mutation carriers – discuss consideration of hysterectomy with BSO

If delaying BSO: transvaginal ultrasound with color Doppler imaging at age 30-35 with concurrent serum CA-125 - not been shown to be sufficiently sensitive to support a positive NCCN recommendation

Consider oral contraceptives – discussion of risk/benefit

The James

HE OHIO STATE UNIVERSITY

Cancer Screening in Males NCCN Guidelines v1.2020

- Breast self-examination training and education beginning at age 35.
- Clinical breast examination every 12 months beginning at age 35.
- (BRCA2) Recommend prostate cancer screening including annual digital rectal examination and PSA test beginning at age 40.
- (BRCA1) Consider prostate cancer screening including annual digital rectal examination and PSA test beginning at age 40.

Screening for other cancers

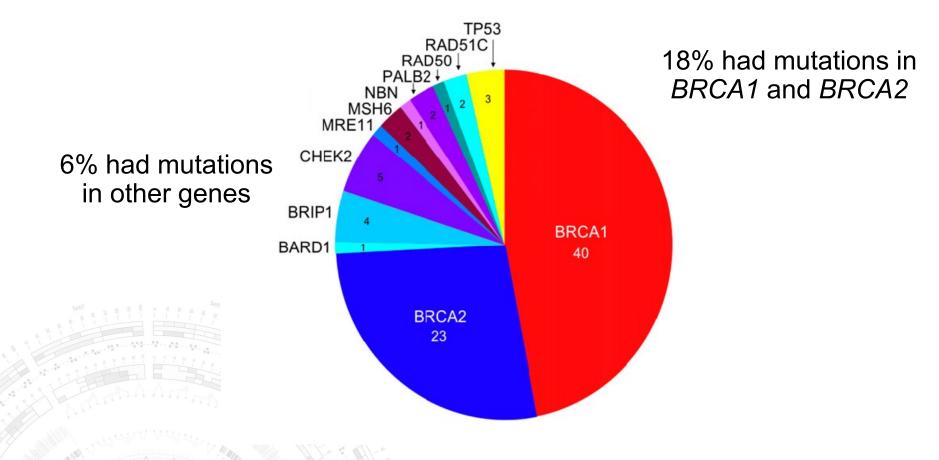
- Melanoma: No specific screening guidelines fbut general melanoma risk management is appropriate, such as annual full-body skin exaination and minimizing UV exposure.
- Pancreatic cancer: Individuals with BRCA1/2, ATM, PALB2, TP53, or Lynch genes (except PMS2) with a FDR or SDR with pancreatic cancer:
 - Consider pancreatic cancer screening beginning at age 50 or 10 years younger than the earliest dx in family.
 - Annual contrast-enhanced MRI/MRCP and/or EUS with consideration of shorter screening intervals for individuals found to have worrisome abnormalities on screening.

HE OHIO STATE UNIVERSITY

- Most small cystic lesions found on screening will not warrant biopsy, surgical resection, or any intervention.
- Follow American Cancer Society guidelines for other cancer surveillance

BRCA1/2 testing has changed over the years

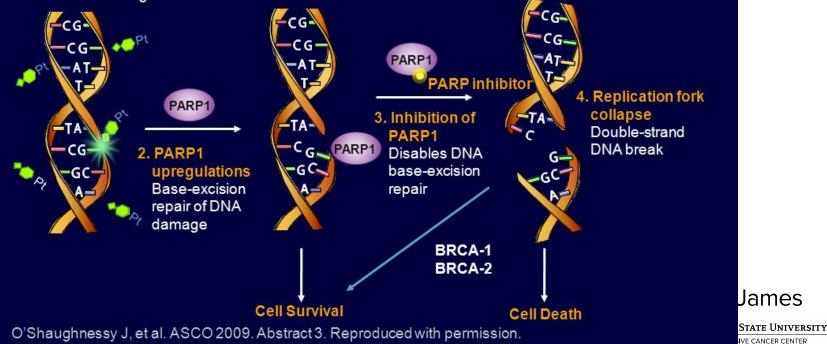
- 1999-2002: BRCA1 and BRCA2 genes were only sequenced
- 2002-2006: BRCA1 and BRCA2 genes were sequenced and the 5 most common large rearrangements (all in BRCA1) were also tested
- 2006-2013: BRCA1 and BRCA2 genes were sequenced and the 5 most common large rearrangements were tested AND patients were offered a \$750 follow-up test called BART that tested for any large rearrangement in BRCA1 or BRCA2
- 2013-present: BRCA1 and BRCA2 usually included in panel gene tests with multiple breast/ovarian & other genes
 - What does this mean? Women whose test did not include BART could still have a BRCA1 or BRCA2 mutation. The James

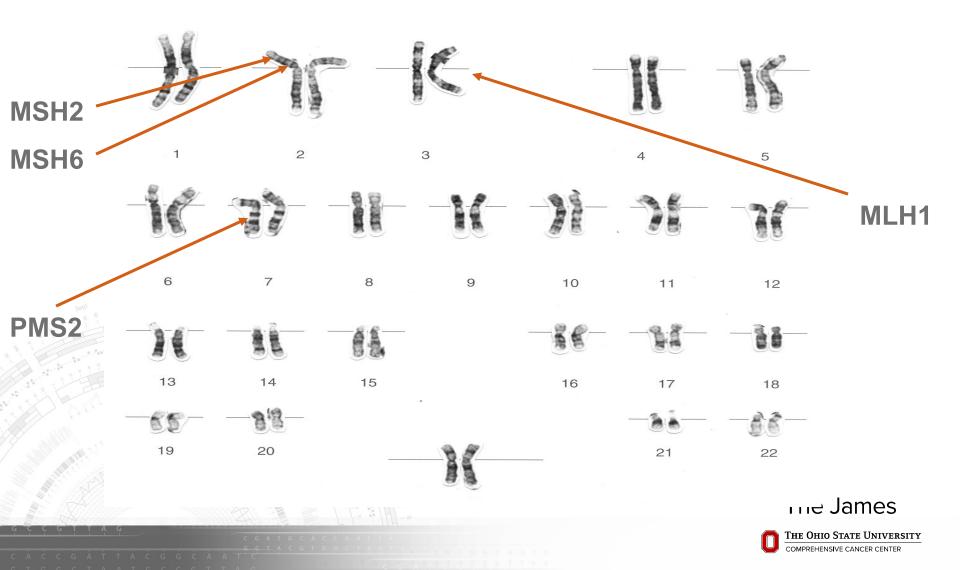

Panel Results: 35,049 Breast Cancer Patients

- 9.3% had a pathogenic mutation in one of 25 cancer genes
 - Half were in BRCA1/2
 - Half were in other genes including CHEK2, ATM, & PALB2
- Women dx <40 were more likely to test positive</p>
- Women diagnosed >59 were less likely to test positive
- Women diagnosed between 40-59 had an 8-9% chance of testing positive

Panel Results – 360 Unselected Ovarian Cancer Patients

Walsh T et al. PNAS 2011;108:18032-7.


PARP Inhibitors work for tumors with BRCA variants


Research Update on PARP Inhibition clinicaloptions.com/oncology CLINICAL CARE OPTIONS

PARP Inhibitor Mechanism of Action

1. Platinum chemotherapy Inflicts DNA damage via adducts and

DNA crosslinking

Lynch Syndrome

- Over 1.2 million individuals in the United States have Lynch syndrome
- Inherited condition that causes high risks for colorectal cancer, endometrial cancer, and other cancers
- Preventable cancers with early and more frequent screening
- 95% of affected individuals do not know they have Lynch syndrome

Lynch Syndrome Cancer Risks (to 70)

Cancer Type	MLH1 and MSH2	MSH6	PMS2	General Public
Colon cancer	40%-80%	10%-22%	15%-20%	4.5%
Endometrial cancer	25%-60%	16%-26%	15%	2.7%
Stomach	1%-13%	<u><</u> 3%	< 6%	< 1%
Ovarian	4%-24%	1%-11%	< 6%	1.6 %

National Comprehensive Cancer Network Guidelines for Colorectal Cancer Screening and Prevention v1.2019; Bonadona V, et al. *JAMA* 2011;305:2304-10; Senter L, et al. *Gastroenterology* 2008;135:419-48.

Lynch Syndrome Surveillance Options NCCN v1.2020

Intervention	Recommendation		
Colon Cancer	MLH1 & MSH2: Colonoscopy every 1-2 y beginning at age 20-25 (or 2-5 years younger than earliest diagnosis if <25		
	MSH6 & PMS2: Colonoscopy every 1-2 y beginning at age 30-35 (or 2-5 years younger than earliest diagnosis if <25		
Endometrial Cancer	Education regarding symptoms		
	Consideration of hysterectomy after childbearing		
	Endometrial biopsy every 1-2 y beginning at age 30-35 can be considered		
Ovarian Cancer	Education regarding symptoms		
	TVUS and CA-125 surveillance could be considered by no evidence of efficacy		
	BSO can be considered after childbearing		
Gastric & Small Bowel Cancer	Risk factors: male sex, older age, MLH1 or MSH2 pathogenic variants, FDR with gastric cancer, Asian ethnicity, chronic autoimmune gastritis, gastric intestinal metaplasia and gastric adenomas.		
	Consider EGD with random biopsy of the proximal and distal stomach for H.pylori, autoimmune gastritis, and intestinal metasplasia beginning at age 40 and surveillance EGD every 3-5 y in those with the above risk factors.		

Lynch Syndrome Surveillance Options NCCN v1.2020

Intervention	Recommendation		
Urothelial cancer	No clear evidence to support. Consider in select individuals with a family history of urothelial cancer and individuals with <i>MSH2</i> pathogenic variants (especially males).		
	Annual urinalysis starting at age 30-35		
Pancreatic Cancer	Consider pancreatic cancer screening beginning at age 50 or 10 years younger than the earliest dx in family.		
	Annual contrast-enhanced MRI/MRCP and/or EUS with consideration of shorter screening intervals for individuals found to have worrisome abnormalities on screening.		
	Most small cystic lesions found on screening will not warrant biopsy, surgical resection, or any intervention.		
Prostate Cancer	General population screening		
Breast Cancer	General population screening		
Brain Cancer	Annual physical/neurologic examination starting at age 25-30y		
Reproductive Risks	Advise about prenatal diagnosis and assisted reproduction including preimplantation genetic testing		
	Advise about risk of rare recessive syndrome called CMMR deficiency if both partners are carriers of pathogenic variants in the same MMR gene		

- 9.9% had a pathogenic mutation in one of 25 cancer genes
- 3.1% had Lynch syndrome
- 7% had non-Lynch syndrome gene mutations including:
 - 2.2% had mutations high-penetrance genes (5 APC, 3 biallelic MUTYH, 11 BRCA1/2, 2 PALB2, 1 CDKN2A and 1 TP53)
 - 3.6% had mutations in moderate-penetrance CRC risk genes (19 MUTYH heterozygotes, 17 APC I1307K, and 2 CHEK2)

Age at dx, family history of CRC, nor personal history of other cancers significantly predicted the presence of mutations in non-Lynch syndrome genes

Why are mismatch repair (MMR) deficient tumors responsive to immunotherapies?

- MMR deficient tumors are more immunogenic than other CRCs
 - More tumor infiltrating lymphocytes
 - Higher mutational burden
 - Greater production of protein products that are truncated or incorrectly coded therefore seen as foreign to the body (FSP or frameshift proteins)
- Studies have shown association of mutational burden, microsatellite instability and TILs to immunotherapy response

Tumor infiltrating lymphocytes

Yoshinaga O et al. Gastroenterology 149(5); 2015. Carethers JM et al. World J Gastroenterology 21(31); 2015. Goyal G Fam Cancer 15; 2016; Wesstdorp H et al. Cancer Immunol Immunotherapy 65(10) 2016.

The James The Ohio State University

COMPREHENSIVE CANCER CENTER

Mismatch repair deficiency predicts response to anti-PD1 and PD-LI immunotherapy

- Le DT et al NEJM 2015
- Responses in non-CRC MMR deficient GI cancers also reported (GI ASCO 2016)
 - CRs in gastric, ampullary, and cholangiocarcinoma
- FDA has recently approved pembrolizumab for MMR deficient solid tumors

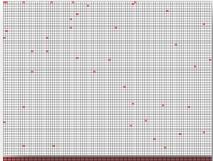
Objective responses by RECIST Criteria

Response	MMR deficient CRC N=10	MMR proficient CRC N=18	MMR deficient non-CRC* N=7
CR	0	0	1 (14)
PR	4 (40)	0	4 (57)
SD	5 (50)	2 (11)	0
PD/NE	1 (10)	15 (89)	2 (29)
OR	40 (12-47)	0	71 (29-96)
DCR	90 (55-100)	11 (1-35)	71 (29-96)

Le DT et al NEJM 372 (2015); Le et al GI ASCO Abstract 195 2016

Tumor Testing Options

Hotspot Panels (using tumor tissue)


- Look at specific, common mutations (e.g. V600E variant in BRAF)
- Do not sequence the entire gene

Comprehensive Sequencing Panels (using tumor tissue)

- Completely sequence multiple genes + testing for common gene fusions and other actionable targets for therapy
- Vary from lab to lab in terms of numbers of genes
- FDA approved therapies for some genes
- Other therapies only available through clinical trials
- Some labs test ONLY tumor or report only tumor mutations; others include germline testing

Liquid Biopsy

- Blood test looking for cancer cells from a tumor that are circulating in the blood or for pieces of DNA from tumor cells that are in the blood
- It may also be used to help plan treatment or to find out how well treatment is working or if cancer has come back.
- Being able to take multiple samples of blood over time may also help doctors understand what kind of molecular changes are taking place in a tumor.
- A liquid biopsy may be used to help find cancer at an early stage

Variant Allele Fraction (VAF)

- What percentage of the cells tested have the mutation in them?
- Germline mutations often ~50%
 - Can be higher if loss of heterozygosity
 - Can be lower for indel mutations
- Somatic mutations often <35%</p>
- Most next-generation sequencing somatic panels produce accurate VAF (have to request them – usually not included on the report)
- VAF can be used in some cases to assess the probability a mutation is germline
 - Does not always work
 - Affected by tumor percentage, ploidy, type of mutation, and loss of heterozygosity

Example

Two MSH2 loss of function mutations in a colorectal tumor with ~50% tumor cells

Mutation 1 VAF is 25% Mutation 2 VAF is 50%

Q. Does this result suggest one mutation is germline?

A. Yes, mutation 2 may be germline based on 50% VAF. Heterozygous somatic mutations in tumor are expected to be at ~25% VAF because only half the sample is tumor cells.

Take Home Messages

- All cancer is genetic (contains somatic gene variants), but NOT all cancer is hereditary (due to a germline gene variant)
- Germline testing is designed to detect any mutation in a cancer susceptibility gene
 - Unlikely to detect a tumor mutation unless there is a lot of tumor circulating in the blood
- Tumor testing is designed to look for actionable therapeutic targets
 - Can detect germline variants but can also miss them

Therapy effective whether variants are in tumor or germline

- Patients may need BOTH types of tests
 - Liquid biopsy is exciting new way to test tumors which James may lead to new tumor screening option

