How to put in your own Photo:

Go to 'View'

Go to 'Insert'

Browse to the image you would like to place. Image should be 1024x768, 1200x900, or other 4:3 aspect ratio

Select image and click OK

Scale to full screen size if necessary.

Click image, go to 'Format'

Send to Back

Go to 'View'

return to slides

Considering Respiratory Health and the Lifecourse Evolution of Chronic Lung Disease

Ravi Kalhan, MD, MS
Professor of Medicine and Preventive Medicine
Director, Asthma and COPD Program
Northwestern University Feinberg School of Medicine
Disclosures

• Consulting / Personal fees from:
 - GlaxoSmithKline
 - AstraZeneca
 - CVS Caremark

• Research support (to Northwestern University) from:
 - GlaxoSmithKline
 - Spiration
 - BTG/PneumRx
 - AstraZeneca
Defining Lung Health

Some facts about the respiratory community’s approach to health and disease

- Lung health in adults has traditionally been defined as the absence of disease
- “Early disease” then becomes defined as the first appearance of abnormal lung physiology
- A framework for early disease is critical to test today’s therapies
- A framework for lung health is critical for disease interception
- The trajectory of decline following attainment of peak lung function is variable – we only seem to care, however, if it declines into the “disease range”
- Outside of smoking, there are limited data on factors associated with maintenance versus decline in pulmonary function
Historical Perspectives on Lung Function Decline

Fletcher & Peto 1977

Burrows 1981

Variable Trajectories from Health to OLD

Two distinct pathways to get to COPD

C Trajectory 3: $\text{FEV}_1 \geq 80\%$ at Baseline and COPD at Final Examination

D Trajectory 4: $\text{FEV}_1 < 80\%$ at Baseline and COPD at Final Examination

“Early” COPD at age 38-50
Seems like maybe they always had it......

Lung function trajectories as precursors to chronic lung disease

Phenotyping Lung Health

Respiratory symptoms at age 25-27 predict future incident lung disease

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Restrictive OR 95% CI</th>
<th>Obstructive OR 95% CI</th>
<th>CT-determined Emphysema OR 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any symptom</td>
<td>1.39 (1.10, 1.76)</td>
<td>1.83 (1.35, 2.49)</td>
<td>0.92 (0.70, 1.22)</td>
</tr>
<tr>
<td>Cough or Phlegm</td>
<td>1.27 (0.91, 1.77)</td>
<td>1.47 (1.02, 2.10)</td>
<td>1.46 (1.02, 2.07)</td>
</tr>
<tr>
<td>Episodes of bronchitis</td>
<td>1.05 (0.56, 1.98)</td>
<td>1.32 (0.68, 2.54)</td>
<td>1.95 (1.05, 3.60)</td>
</tr>
<tr>
<td>Wheeze</td>
<td>1.09 (0.84, 1.43)</td>
<td>2.00 (1.47, 2.71)</td>
<td>0.93 (0.68, 1.27)</td>
</tr>
<tr>
<td>Shortness of breath</td>
<td>1.85 (1.30, 2.64)</td>
<td>1.05 (0.63, 1.75)</td>
<td>1.06 (0.60, 1.86)</td>
</tr>
<tr>
<td>Chest illnesses</td>
<td>1.04 (0.79, 1.36)</td>
<td>1.55 (1.13, 2.11)</td>
<td>1.07 (0.77, 1.48)</td>
</tr>
</tbody>
</table>

Covariates: age, race-sex group, center, baseline BMI, physician-confirmed asthma, smoking status (never, former current).

Phenotyping Lung Health – Radiographic Imaging
Using the Local Histogram to Create a Lung Health Map

Phenotyping Lung Health
Blood biomarkers and lung injury

Liu GY, et al. ATS 2021 – manuscript in preparation
Lung injury and future disease

<table>
<thead>
<tr>
<th>CT Abnormality – CARDIA year 25 (mean age 50)</th>
<th>Percentage of Parenchymal Lung Injury (tertiles) – CARDIA year 15 (mean age 40)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tertile 1</td>
</tr>
<tr>
<td>Centrilobular emphysema, OR (95% CI)</td>
<td>1 (reference)</td>
</tr>
<tr>
<td>Paraseptal emphysema, OR (95% CI)</td>
<td>1 (reference)</td>
</tr>
<tr>
<td>Interstitial abnormalities, OR (95% CI)</td>
<td>1 (reference)</td>
</tr>
</tbody>
</table>

Liu GY, et al. ATS 2021 – manuscript in preparation
Association of inflammatory markers with year 25 interstitial features, stratified by year 15 CT lung injury

<table>
<thead>
<tr>
<th></th>
<th>Less Y15 CT lung injury</th>
<th>More Y15 CT lung injury</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Effect estimate</td>
<td>p-value</td>
</tr>
<tr>
<td>CRP</td>
<td>-0.003</td>
<td>0.952</td>
</tr>
<tr>
<td>ICAM-1</td>
<td>0.060</td>
<td>0.782</td>
</tr>
</tbody>
</table>

Liu GY, et al. ATS 2021 – manuscript in preparation
Our Paradigm of Lifetime Respiratory Health

PULMONARY PERSPECTIVE

Defining Impaired Respiratory Health
A Paradigm Shift for Pulmonary Medicine
Paul A. Reyfman¹, George R. Washko², Mark T. Dransfield³, Avrum Spira⁴, MeiLan K. Han⁵, and Ravi Kalhan¹,⁶
American Journal of Respiratory and Critical Care Medicine Volume 198 Number 4 | August 15 2018

[Diagram showing lung function over time and the concept of ideal lung health, impaired lung health (susceptibility), impaired lung health (reserve), and poor lung health.]
Some concluding thoughts

- Ideal lung health is more than the absence of lung disease
 - Impaired lung health is associated adverse consequences
 - Disease-focused studies, even when inclusive of early disease, do not inform lung health or prevention strategies nor do they typically enable interception strategies
- Preservation of lung health is not solely predicated on avoidance of cigarette smoking
 - The full “exposome” plays a role in loss of lung health and intermediate phenotypes of impaired respiratory health have innumerable adverse health consequences
- Major gains in cardiovascular disease prevention are attributable to health-promotion
 - The absence of a disease-agnostic lung health study in the US has hindered our efforts at prevention of lung disease
 - We lack the cholesterol for the lung – imaging biomarkers are a clear opportunity!
The American Lung Association Lung Health Cohort
Now recruiting............