Big Data and Vulnerable Populations – Addressing the Gap

David Yankelevitz
Financial and Research Disclosures:

- Dr. David Yankelevitz is a named inventor on a number of patents and patent applications relating to the evaluation of diseases of the chest including measurement of nodules. Some of these, which are owned by Cornell Research Foundation (CRF) are non-exclusively licensed to General Electric. As an inventor of these patents, Dr. Yankelevitz is entitled to a share of any compensation which CRF may receive from its commercialization of these patents.

- A shareholder in Accumetra LLC
- Medical Advisory Board Carestream Health
- Advisory Panel Pfizer, Genentech, AstraZeneca, LungLifeAI
Panelists

• Anthony P. Reeves, PhD, School of Electrical and Computer Engineering, Cornell University
• Melinda Aldrich, PhD, MPH, Department of Medicine, Vanderbilt University Medical Center
• Emanuela Taioli, MD, PhD, Institute for Translational Epidemiology, Icahn School of Medicine at Mount Sinai
• Heather Pierce, JD, MPH, Center for Health Justice, Association of American Medical Colleges
• Erik Lium, PhD, Mount Sinai Innovation Partners
Mount Sinai Health System
Pathway to development of a useful database

- LDCT in the context of lung cancer screening
- Need to define the purpose of images (i.e. advanced image processing, quantitation, detection, diagnosis)
 - Lung cancer, emphysema, CAC, osteoporosis, other health measures
- Necessary quality for defined purpose
Tumor volume measurement error using computed tomography imaging in a phase II clinical trial in lung cancer

Claudia I. Henschke,a,b,* David F. Yankelevitz,a Rowena Yip,a Venice Archer,c Gudrun Zahlmann,d Karthik Krishnan,e Brian Helba,e and Ricardo Avila1

aIcahn School of Medicine at Mount Sinai, One Gustave Levy Place, Box 1234, New York, New York 10029, United States
bEarly Diagnosis and Treatment Research Foundation, PO Box 1609, New York, New York 10021-0044, United States
cRoche Products Limited (Pharmaceuticals), Hexagon Place, 6 Falcon Way, Shire Park, Welwyn Garden City AL7 1TW, United Kingdom
dF.Hoffmann-La Roche, Grenzacherstrasse 124, Basel 4070, Switzerland
eKitware Inc., 28 Corporate Drive, Clifton Park, New York 12065, United States
1Accumetra LLC, 7 Corporate Drive, Clifton Park, New York 12065, United States
Guess which scanner?
The addition of methylation biomarkers to clinical variables significantly improved lung cancer prediction accuracy.

Study Populations: ECOG-ACRIN5597 trial, the Lovelace Smokers Cohort and the PLuSS cohorts

Integrated risk prediction model that combined smoking exposure with the biomarker score yielded an AUC of 0.83 compared with 0.73 for a model based on smoking exposure alone (p=0.003).

Study Populations: the European Prospective Investigation into Cancer and Nutrition (EPIC) and the Northern Sweden Health and Disease Study (NSHDS)
Combining DNA Repair score with age and smoking can substantially improve lung cancer risk prediction (p=0.0002)

Study Populations: Patients from Royal Papworth Hospital (Cambridge, UK) and Cambridge BioResource.

Median Technologies announces outstanding performance for its iBiopsy® Lung Cancer Screening CADx™ to accurately characterize malignant vs benign lung nodules based on a large-scale patient cohort

- Results show cutting-edge performance of 95.2% sensitivity and 95.7% specificity for lung nodule characterization that could significantly impact lung cancer screening programs adoption.
- The large-scale study is based on a cohort of 1,696 patients with a total of 15,608 lung nodules.
- Further results on a fully automated end-to-end lung cancer screening CADe/CADx including nodule detection and characterization are expected in Q4, 2021.

Study Population: the National Lung Screening Trial cases (NLST)
A multi-group two-year NIBIB-funded ($20M) project that includes:
- AAPM, ACR, and RSNA, as well as 20 other institutions
- Imaging and data commons through technology development projects
- Initial research projects to expedite translation of AI from scientific findings and technical resources to public dissemination and clinical benefit

MIDRC.org
Rapid Response to COVID-19 Pandemic

University of Chicago NIBIB Contract PI: Maryellen Giger

American Association of Physicists in Medicine (AAPM) PIs:
- Maryellen Giger (University of Chicago & AAPM Data Science Committee Chair)
- Paul Kinahan (University of Washington & AAPM Research Committee Chair)

Radiological Society of North America (RSNA) PIs:
- Curtis Langlotz (Stanford University & RSNA Board Liaison for IT & Annual Meeting)
- Adam Flanders (Thomas Jefferson University & Member RSNA CDE Committee)

American College of Radiology (ACR) PIs:
- Etta Pisano (ACR Chief Research Officer & Harvard University)
- Michael Tilkin (ACR Chief Information Officer)

Gen3 PI: Robert Grossman
MIDRC: Technology Development Projects

The **MIDRC infrastructure and processes** is being created through five **Technology Development Projects**, which will be conducted collaboratively:

1. Creating an open discovery platform for COVID-19 imaging and associated data (**led by RSNA**).
2. Creating a real-world testing and implementation platform with direct real-time connections to health care delivery organizations (**led by ACR**).
3. Developing and implementing quality assurance and evaluation procedures for usage across the MIDRC (**led by AAPM**).
4. Enabling data intake, access and distribution via a world-facing data commons portal (**led by all three plus Gen3**).
5. Linking the MIDRC to other clinical and research data registries (**led by all three plus Gen3**).

Three MIDRC Data Science Subcommittees

- **DSIT** - Data Standards and Information Technology Subcommittee
 - led by RSNA
- **DPP** - Data Policy and Procedures Subcommittee
 - led by ACR
- **DQH** - Data Quality and Harmonization Subcommittee
 - led by AAPM
Collection and curation of diverse imaging data

Contributions are coming from 23 states

Imaging data in the pipeline from data contribution agreements to ingestion to curation and then to release on the Gen3 output portal

Diversity assessment as of May 2021
Ethics of Using and Sharing Clinical Imaging Data for Artificial Intelligence: A Proposed Framework

David B. Larson, MD, MBA • David C. Magnus, PhD • Matthew P. Langren, MD, MPH • Nigam H. Shah, MBBS, PhD • Curtis P. Langlotz, MD, PhD

"After clinical data are used to provide care, the primary purpose for acquiring the data is fulfilled. At that point, clinical data should be treated as a form of public good, to be used for the benefit of future patients."

https://pubs.rsna.org/doi/pdf/10.1148/radiol.2020192536
The importance of low-dose CT screening to identify emphysema in asymptomatic participants with and without a prior diagnosis of COPD

David Steiger a, M. Faisal Siddiqi a, Rowena Yip b, David F. Yankelevitz b, Claudia I. Henschke b, c, On behalf of the ELCAP investigators

a Division of Pulmonary, Critical Care and Sleep Medicine, Icahn School of Medicine, Mount Sinai St. Luke's, Mount Sinai West, Mount Sinai Beth Israel, New York, NY, United States of America
b Department of Radiology, Icahn School of Medicine, Mount Sinai Hospital, New York, NY, United States of America
c Phoenix Veterans Health Care System, Phoenix, AZ, United States of America

ARTICLE INFO

Keywords:
Emphysema
COPD
CT screening
Lung cancer

ABSTRACT

Purpose: Chronic Obstructive Pulmonary Disease (COPD) includes chronic bronchitis, small airways disease, and emphysema. Diagnosis of COPD requires spirometric evidence and may be normal even when small airways disease or emphysema is present. Emphysema increases the risk of exacerbations, and is associated with all-cause mortality and increased risk of lung cancer. We evaluated the prevalence of emphysema in participants with and without a prior history of COPD.

Methods: We reviewed a prospective cohort of 52,726 subjects who underwent baseline low dose CT screening for lung cancer from 2003 to 2016 in the International Early Lung Cancer Action Program.

Results: Of 52,726 participants, 23.8% (12,542) had CT evidence of emphysema. Of these 12,542 participants with emphysema, 76.5% (9595/12,542) had no prior COPD diagnosis even though 23.6% (2258/9595) had moderate or severe emphysema. Among 12,542 participants, significant predictors of no prior COPD diagnosis were: male (OR = 1.47, p < 0.0001), younger age (OR = 0.72, p < 0.0001), lower pack-years of smoking (OR = 0.90, p < 0.0001), completed college or higher (OR = 1.54, p < 0.0001), no family history of lung cancer (OR = 1.12, p = 0.04), no self-reported cardiac disease (OR = 0.76, p = 0.0003) or hypertension (OR = 0.74, p = 0.0001). The severity of emphysema was significantly lower among the 9595 participants with no prior COPD diagnosis, the OR for moderate emphysema was OR moderate = 0.58 (p = 0.0007) and for severe emphysema, it was OR severe = 0.23 (p < 0.0001).

Conclusion: Emphysema was identified in 23.8% participants undergoing LDCT and was unsuspected in 76.5%. LDCT provides an opportunity to identify emphysema, and recommend smoking cessation.
Pathway to development of a useful database

• ‘Legacy’ databases
 • CAC (3 mm slice thickness)
 • NLST
 • Osteoporosis

• Combining information from different databases
 • Imaging, molecular, genetic, proteomic, etc

• Establishing normal values for diverse population
 • Tools for measuring the same, but normal values may be different
 • How do we determine number of participants
Pathway to development of a useful database

• Obtaining data
 • Needs of the academic institution
 • Societal needs

• Releasing data
 • Who has access?