BRIGHAM HEALTH

34 - L

BRIGHAM AND WOMEN'S HOSPITAL

Quantitative Assessment of Emphysema Progression

Samuel Ash MD MPH Associate Physician - Brigham and Women's Hospital Assistant Professor of Medicine - Harvard Medical School

Applied Chest Imaging Laboratory HMS Brigham and Women's Hospital – The Lung Center

THE CARL 1. AND RUTH SHAPIRO CARDIOYASCHLAR

Disclosures

- Research funding
 - Pulmonary fibrosis foundation
 - NIH-NHLBI
- Other
 - Quantitative Imaging Solutions scientific advisor/owner

Background

Roles for objective thoracic medical image analysis* **an incomplete list*

- In vivo understanding of structure/function and disease pathogenesis
- Disease diagnosis
 - Primary disease
 - Secondary diseases

Measurement of disease severity

- Cross sectional
- Longitudinal
 - Response to therapy

Association with and prediction of outcomes

• Likelihood of response to intervention

What is the clinical significance of this change?

---->

Disease Specific Measure

Disease Specific Measure

Muller 1988

100

80

0.50

Ó

20

40 60 analysis time

Figure 1. Kaplan-Meier survival estimates by low-attenuation area (%LAA) tertiles, n = 947 subjects from the GenKOLS study 2003–2005. (*A*–*E*) Respiratory mortality (*A*), cardiovascular mortality (*B*), cancer mortality (*C*), lung cancer mortality (*D*), and all-cause mortality (*E*) from baseline through June 2011. *Blue line*, low %LAA (<3); *red line*, medium %LAA (3–10); *green line*, high %LAA (>10).

Johannessen 2013

Barriers to Use of Quantitative Thoracic Imaging as Biomarker

Technical

- Image acquisition parameters
- Variation in manufacturers
- Variable reconstruction algorithms
- Device calibration
- Image quality assurance
- Patient/scanner interaction

Clinical

- Association of change with clinically relevant outcome
- Clinical reproducibility/patient level confounders

Barriers to Use of Quantitative Thoracic Imaging as Biomarker

Technical

Clinical

- Association of change with clinically relevant outcome
- Clinical reproducibility/patient level confounders

TABLE 1. LUNG PARENCHYMAL PARAMETERS COMMONLY EMPLOYED TO ESTIMATE EXTENT OF EMPHYSEMA USING QUANTITATIVE COMPUTED TOMOGRAPHY

Measured Parameters		Confounding Factors	Derived Parameters		
Volume Total lung Lobar	Sum of voxels Both lungs or right/left Sum of voxels on specific lobes	Spatial resolution; inspiration level	Mass = Tissue volume = Air volume =	Volume $ imes$ CT density Mass/tissue density Total volume – tissue volume	
X-ray attenuation	Hounsfield units (HU)	Image noise; depth of inspiration	CT density Specific lung inflation	(HU+1,000)/1,000 1/CT density – 1/tissue density	
Low attenuation area	% voxels <predefined threshold (i.e., -950 HU)</predefined 	Image noise; depth of inspiration	Low attenuation cluster analysis	Slope of regression line of cumulative number of low attenuation clusters vs. size of low attenuation cluster	
Percentile	HU at predefined percentile value of frequency distribution of X-ray attenuation values (e.g., lowest 15th percentile)	Image noise; depth of inspiration			

Lung Density Perc15

FIGURE 1. Density distribution in the lung. Histogram of densities from a subject with normal lungs () and a patient with emphysema (----). The 15th percentile point () is the density value on the x-axis that covers 15% of all densities of the histogram. 1: 15th percentile point.

Fain 2014 Stolk 2007

Barriers to Use of Quantitative Thoracic Imaging as Biomarker

Technical

Clinical

Study Design

- Objective:
 - Determine if emphysema progression over 3-5 years is associated with subsequent:
 - Mortality
 - Respiratory specific mortality
- Cohorts:
 - COPDGene Study
 - Evaluation of COPD Longitudinally to Identify Predictive Surrogate End-points (ECLIPSE)
- Groups:
 - Ever smokers with emphysema (primary analyses)
 - All ever smokers (secondary analyses)
 - Never smokers for development of MCID

Methods

• Predictor:

- Lung Density Perc15 adjusted for lung volume based on the sponge model
 - Annualized rate of change (continuous)
 - Progressor vs. non-progressor (dichotomous)
- Definitions:
 - Emphysema at baseline: those with low attenuation area (LAA) > the upper limit of normal defined by the MESA study
 - Progression:
 - Absolute Lung Density Perc15 decline of more than the mean repeatability coefficient from QIBA (11 g/L)
 - Rate of Lung Density Perc15 decline ½ SD more than the mean rate in 'never-smoking normals'
 Dirksen 2008 Hoffman 2014

Mortality by Progression Rate

	Confidence Interval			
All Cause Mortality	Hazard Ratio	Lower	Upper	р
COPDGene	1.08	1.01	1.16	0.03
ECLIPSE	1.06	1.00	1.13	0.045
Respiratory Specific Mortality				
COPDGene	1.22	1.13	1.31	< 0.001

¹ Effects expressed as change in the risk of all-cause mortality per 1 g/L/year faster rate of change in density

² Mortality assessed as time since follow-up visit

³ All cause mortality models adjusted for: a) Race and gender; b) Baseline age, smoking status, pack years, forced expiratory volume in one second, six minute walk distance and volume adjusted lung density measured at the 15th percentile of the CT lung density histogram (Lung Density Perc15); c) Change in smoking status, rate of change in forced expiratory volume in one second and rate of change in six minute walk distance.

⁴ Respiratory specific mortality models adjusted for race, gender and age, and performed using the Fine and Gray method of accounting for competing risk.

⁴ Results shown are in those with emphysema at baseline

Mortality by Progression Category

Adjusted Survival Curve for Change in Lung Density Perc15 Relative to the Repeatability Coefficient COPDGene - Those with emphysema at baseline Adjusted Survival Curve for Change in Lung Density Perc15 Relative to the Repeatability Coefficient ECLIPSE - Those with emphysema at baseline

Mortality by Progression Category

Adjusted Survival Curve for Rate of Change in Lung Density Perc15 Relative to Minimum Clinically Important Difference COPDGene - Those with emphysema at baseline

Adjusted Survival Curve for Rate of Change in Lung Density Perc15 Relative to Minimum Clinically Important Difference ECLIPSE - Those with emphysema at baseline

Comparison of Model Performance - COPDGene

		р	
Comparison	NRI	First Model vs. Second Model (non-nested only)	Second Model vs. First Model
Baseline vs. Baseline			
Baseline Spirometry vs. Baseline Imaging	-0.12	0.08	0.92
Baseline Spirometry vs. Baseline Spirometry + Baseline Imaging	0.07	N/A	0.02
Baseline Imaging vs. Baseline Spirometry + Baseline Imaging	0.19	N/A	< 0.001
Longitudinal vs. Longitudinal			
Longitudinal Spirometry vs. Longitudinal Imaging	-0.04	0.20	0.80
Longitudinal Spirometry vs. Longitudinal Spirometry + Longitudinal Imaging	0.13	N/A	0.01
Longitudinal Imaging vs. Longitudinal Spirometry + Longitudinal Imaging	0.15	N/A	< 0.001
Baseline vs. Longitudinal			
Baseline Spirometry vs. Longitudinal Spirometry	0.18	N/A	0.002
Baseline Imaging vs. Longitudinal Imaging	0.23	N/A	< 0.001
Baseline Spirometry + Baseline Imaging vs. Longitudinal Spirometry + Longitudinal Imaging	0.25	N/A	< 0.001

Comparison of Model Performance - ECLIPSE

		р	
Comparison	NRI	First Model vs. Second Model (non-nested only)	Second Model vs. First Model
Baseline vs. Baseline			
Baseline Spirometry vs. Baseline Imaging	-0.09	0.17	0.83
Baseline Spirometry vs. Baseline Spirometry + Baseline Imaging	0.15	N/A	< 0.001
Baseline Imaging vs. Baseline Spirometry + Baseline Imaging	0.21	N/A	< 0.001
Longitudinal vs. Longitudinal			
Longitudinal Spirometry vs. Longitudinal Imaging	-0.08	0.15	0.85
Longitudinal Spirometry vs. Longitudinal Spirometry + Longitudinal Imaging	0.12	N/A	< 0.001
Longitudinal Imaging vs. Longitudinal Spirometry + Longitudinal Imaging	0.24	N/A	< 0.001
Baseline vs. Longitudinal			
Baseline Spirometry vs. Longitudinal Spirometry	0.21	N/A	< 0.001
Baseline Imaging vs. Longitudinal Imaging	0.17	N/A	< 0.001
Baseline Spirometry + Baseline Imaging vs. Longitudinal Spirometry + Longitudinal Imaging	0.18	N/A	< 0.001

Emphysema Current Status

- Letter of intent for qualification of volume adjusted lung density Perc15 resubmitted to the FDA after initial favorable comments
- CBQC transitioned to PIVOT
- White paper consensus document in progress

Summary

- Densitometric emphysema progression is associated with all cause and respiratory specific mortality in ever smokers with emphysema
- In combination with extensive prior work on densitometry, this suggests that volume adjusted Lung Density can be used as an imaging biomarker
- Additional work is needed in clinical cohorts and to determine what interventions might change the course of emphysema progression

Acknowledgements

- Applied Chest Imaging Laboratory
 - Raúl San José Estépar
 - George Washko
 - Gonzalo Vegas Sánchez-Ferrero
 - Rola Harmouche
 - Ruben San José Estépar
 - Alejandro Diaz
 - Stefanie Mason
 - Farbod Rahaghi
 - Carrie Pistenmaa
 - James Ross
- BWH PCCM
 - Tracy Doyle
 - Bina Choi
 - Gary Hunninghake
 - Rachel Putman
 - Bruce Levy

- Additional contributors:
 - David Lynch
 - Sean Fain
 - Ruth Tal-Singer
 - Stephen Rennard
 - Rob Stockley
 - Lars Nordenmark
 - Debora Merrill
 - MeiLan Han
 - Stephen Humphries
 - Frank Sciurba
 - Julie Yates
 - Najma Adan
 - Ravi Kalhan
 - Paul Reyfman
 - Gabrielle Liu
 - Fernando Martinez
 - Russell Bowler
 - Thomas Leonard
 - David Wilson
 - Ivan Rosas

- COPD Foundation
- COPD Biomarkers Qualification Consortium
- Radiological Society of North America
- Quantitative Imaging Biomarkers Alliance
- NIH/NHLBI
 - K08-HL145118
- Pulmonary Fibrosis Foundation
 - I.M. Rosenzweig Junior Investigator Award
- COPDGene Investigators
 - NIH, COPD Foundation, AstraZeneca, Boehringer-Ingelheim, GlaxoSmithKline, Novartis, Pfizer, Siemens and Sunovion
- ECLIPSE Investigators
 - GlaxoSmithKline